## Further Algebra and Functions I Cheat Sheet

## Relationship Between the Roots and Coefficients of a Polynomial

The roots of a polynomial are the points at which the curve crosses the $x$-axis. In the $15^{\text {th }}$ century, French mathematician François Viète discovered a connection between the sums and products of the roots of a polynomial and its coefficients.

## Quadratic Equations

For a quadratic equation of the form $a x^{2}+b x+c=0$ with roots $\alpha, \beta$, where $a \neq 0$ :

- $\alpha+\beta=-\frac{b}{a}$
- $\alpha \beta=\frac{c}{a}$


## Cubic Equations

For a cubic equation of the form $a x^{3}+b x^{2}+c x+d=0$ with roots $\alpha, \beta, \gamma$, where $a \neq 0$ :

- $\alpha+\beta+\gamma=-\frac{b}{a}$
- $\alpha \beta+\beta \gamma+\gamma \alpha=\frac{{ }^{a}}{a}$
- $\alpha \beta \gamma=-\frac{d}{a}$


## Quartic Equations

For a quartic equation of the form $a x^{4}+b x^{3}+c x^{2}+d x+e=0$ with roots $\alpha, \beta, \gamma, \delta$, where $a \neq 0$ :

- $\Sigma \alpha=\alpha+\beta+\gamma+\delta=-\frac{b}{a}$
- $\quad \sum \alpha \beta=\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=\frac{c}{a}$
- $\sum \alpha \beta \gamma=\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=-\frac{d}{a}$
- $\sum \alpha \beta \gamma \delta=\alpha \beta \gamma \delta=\frac{e}{a}$

Example 1: $\alpha, \beta, \gamma$ and $\delta$ are the roots of the quartic equation $4 x^{4}+7 x^{3}+8 x^{2}-x-12=0$. Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$.

| Rewrite $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ using the expressions <br> that relate the roots of the polynomial to its <br> coefficients. | $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}=\frac{\sum \alpha \beta \gamma}{\sum \alpha \beta \gamma \delta}$ |
| :--- | :---: |
| Calculate $\sum \alpha \beta \gamma$ and $\sum \alpha \beta \gamma \delta$. Use the <br> expression from the firss line of working to <br> find the required resilt. | $\sum \alpha \beta \gamma=-\frac{(-1)}{4}=\frac{1}{4}$ |
|  | $\sum \alpha \beta \gamma \delta=\frac{-12}{4}=-3$ |
|  | $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}=\frac{\frac{1}{4}}{-3}=-\frac{1}{12}$ |

## Linear Transformation of the Roots of a Polynomial

It is possible to form a new polynomial equation whose roots are a linear transformation of a given polynomial equation.
There are two common methods to tackle these problems, but as the AQA A-Level Further Mathematics course just involves linear transformations of cubics and quartics, the substitution method is generally most
suitable. This method is used in the example below.

Example 2 : $3 z^{3}+z^{2}-4 z+1=0$ has roots $\alpha, \beta$, and $\gamma$. Find a new polynomial with roots $2 \alpha+1,2 \beta+1$, $\frac{\text { Example }}{2 \gamma+1 .}$

```
Define w to be one of
the roots of the origina
polynomial.The first
here.
```


## $f(\alpha)=0$ by the facto theorem. Hence,

 original polynoderive a new
polynomial in terms of
Expand each bracket
and leave the new
polynomial in simplified
$3\left(\frac{w-1}{2}\right)^{3}+\left(\frac{w-1}{2}\right)^{2}-4\left(\frac{w-1}{2}\right)+1=0$

$$
\begin{gathered}
3\left(\frac{w^{3}-3 w^{2}+3 w-1}{8}\right)+\left(\frac{w^{2}-2 w+1}{4}\right)-4\left(\frac{w-1}{2}\right)+1=0 \\
3\left(w^{3}-3 w^{2}+3 w-1\right)+2\left(w^{2}-2 w+1\right)-16(w-1)+8=0 \\
3 w^{3}-9 w^{2}+9 w-3+2 w^{2}-4 w+2-16 w+16+8=0 \\
3 w^{3}-7 w^{2}-11 w+23=0
\end{gathered}
$$

## Series as a Summation

A series is the sum of the terms in a given sequence. In general, $S_{n}=u_{1}+u_{2}+u_{3}+\cdots+u_{n}$, where $S_{n}$ denotes the sum of the first $n$ terms of the sequence, and $u_{n}$ denotes the $t^{t h}$ term of the sequence. Using sigma notation, $S_{n}$ can be more efficiently written as: $\sum_{r=1}^{n} u_{r}$. In words, this means to sum $u_{r}$ from 1 to $n$.
This section will look at problems involving summing series from the following standard results:

- $\sum_{r=1}^{n} 1=n$
- $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$
- $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$


Sums of Integers
Example 3: Given that $f(r)=a r+b$ and $\sum_{r=1}^{n} f(r)=3 n^{2}+7 n$, find the constants $a$ and $b$.


Sums of Squares and Cubes
Example 4: Find $\sum_{r=n+1}^{2 n} r^{2}$.

## Write the expression as a subtraction involving two summations, both with a lowe

 Rewrite the summations using the standard result for the sum of squares.Fctorise and simplify the RHS.


## Method of Differences

Take a series of the general form $\sum_{r=1}^{n} f(r+1)-f(r)$. Writing the summation term-by-term yields:

$$
(f(2)-f(1))+(f(3)-f(2))+\cdots+(f(n)-f(n-1))+(f(n+1)-f(n)) .
$$

It quickly becomes apparent that most terms will cancel each other out, leaving $\sum_{r=1}^{n} f(r+1)-f(r)=$ $f(n+1)-f(1)$. This is the basis behind the method of differences.

## Method of Differences for General Numeric and Algebraic Series

Example 5: $\sum_{r=1}^{n} 2 r=\sum_{r=1}^{n}[r(r+1)-(r-1) r]$. Use this result and the method of differences to prove that $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$.

| Use the result given to derive an <br> expression for $\sum_{r=1}^{n} r$ by dividing <br> both sides by 2. | $\sum_{r=1}^{n} 2 r=\sum_{r=1}^{n}[r(r+1)-(r-1) r]$ |
| :--- | :--- |
|  | $\Rightarrow \sum_{r=1}^{n} r=\frac{1}{2} \sum_{r=1}^{n}[r(r+1)-(r-1) r]$ |

Calculate the first few terms and the last few terms until a patter
is spotted. This is done by substituting $r=1, r=2$, $n-1, r=n-1$ separately. Avoid simplifying the pairs of terms to spot the pattern more easily.
As the $(1 \times 2)$ terms cancel out from the first and second pairs of terms, it becomes clear that the left term of a pair of terms will cancel out with the right term of
the next pair of terms From this it is possible to reduce the summation as shown. Physically summation as shown. Physically
crossing out terms will be useful.

$$
\begin{aligned}
& \sum_{r=1}^{n} 2 r=\sum_{r=1}^{n}[r(r+1)-(r-1) r] \\
& \Rightarrow \sum_{r=1}^{n} r=\frac{1}{2} \sum_{r=1}^{n}[r(r+1)-(r-1) r]
\end{aligned}
$$

$\sum_{r=1}^{n} r=\frac{1}{2}[((1 \times 2)-(0 \times 1))+((2 \times 3)-(1 \times 2))$ $\sum_{r=1}^{r=} \frac{1}{2}((1 \times 2)-(0 \times 1))+((2 \times 3)-(1 \times 2))+\cdots$
$+((n-1) n-(n-2)(n-1))+(n(n+1)-(n-1) n)$

Using the method of differences:

$$
\begin{aligned}
& \text { Using the method of differences: } \\
& =\frac{1}{2}[((1 \times 2)-(0 \times 1))+((2 \times 3)-(1 \times 2))+
\end{aligned}
$$

$$
\begin{gathered}
=\frac{\dot{2}}{2}[((1 \times 2)-(0 \times 1))+((2 \times 3)-(1 \times 2))+\cdots \\
+((n-1) n-(n-2)(n-1))+(n(n+1)-(n-1) n)]
\end{gathered}
$$

$$
=\frac{1}{2}[0+n(n+1)]
$$

$$
=\frac{1}{2} n(n+1)
$$

$$
\text { : } \sum_{r=1}^{n} r=\frac{1}{2} n(n+1) \text {, as required. }
$$

## Method of Differences Involving Partial Fractions (A-Level Only

Example 6: a) Express $\frac{2}{k(k+2)}$ in partial fractions. b) Hence find $\sum_{k=1}^{\infty} \frac{2}{k(k+2)}$.
www.pmt.education
PMTEducation

