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Relationship Between the Roots and Coefficients of a Polynomial 

The roots of a polynomial are the points at which the curve crosses the 𝑥-axis. In the 15th century, French 

mathematician François Viète discovered a connection between the sums and products of the roots of a 

polynomial and its coefficients. 

Quadratic Equations 

For a quadratic equation of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 with roots α, β, where 𝑎 ≠ 0: 

• α + β = −
𝑏

𝑎
 

• αβ =
𝑐

𝑎
 

Cubic Equations 

For a cubic equation of the form 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 with roots 𝛼, 𝛽, 𝛾, where 𝑎 ≠ 0: 

• 𝛼 + 𝛽 + 𝛾 = −
𝑏

𝑎
 

• 𝛼β + βγ + γα =
𝑐

𝑎
 

• αβγ = −
𝑑

𝑎
 

Quartic Equations 

For a quartic equation of the form 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 with roots α, β, γ, δ, where 𝑎 ≠ 0: 

• ∑ 𝛼 = α + β + γ + δ = −
𝑏

𝑎
 

• ∑ 𝛼𝛽 = αβ + αγ + αδ + βγ + βδ + γδ =
𝑐

𝑎
 

• ∑ 𝛼𝛽𝛾 = αβγ + αβδ + αγδ + βγδ = −
𝑑

𝑎
 

• ∑ 𝛼𝛽𝛾𝛿 = αβγδ =
𝑒

𝑎
 

Example 1: α, β, γ and δ are the roots of the quartic equation 4𝑥4 + 7𝑥3 + 8𝑥2 − 𝑥 − 12 = 0. Find the value 

of 
1

α
+

1

𝛽
+

1

𝛾
+

1

𝛿
. 

Linear Transformation of the Roots of a Polynomial 

It is possible to form a new polynomial equation whose roots are a linear transformation of a given 

polynomial equation. 

There are two common methods to tackle these problems, but as the AQA A-Level Further Mathematics 

course just involves linear transformations of cubics and quartics, the substitution method is generally most 

suitable. This method is used in the example below. 

Example 2: 3𝑧3 + 𝑧2 − 4𝑧 + 1 = 0 has roots α, β, and γ. Find a new polynomial with roots 2α + 1, 2β + 1, 

2γ + 1. 

 

 

Series as a Summation 

A series is the sum of the terms in a given sequence. In general, 𝑆𝑛 = 𝑢1 + 𝑢2 + 𝑢3 + ⋯ + 𝑢𝑛, where 𝑆𝑛 

denotes the sum of the first 𝑛 terms of the sequence, and 𝑢𝑛 denotes the 𝑛𝑡ℎ term of the sequence. Using 

sigma notation, 𝑆𝑛 can be more efficiently written as: ∑ 𝑢𝑟
𝑛
𝑟=1 . In words, this means to sum 𝑢𝑟  from 1 to 𝑛. 

This section will look at problems involving summing series from the following standard results: 

• ∑ 1 = 𝑛𝑛
𝑟=1  

• ∑ 𝑟𝑛
𝑟=1 =

1

2
𝑛(𝑛 + 1) 

• ∑ 𝑟2 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1)𝑛

𝑟=1  

• ∑ 𝑟3𝑛
𝑟=1 =

1

4
𝑛2(𝑛 + 1)2 

Sums of Integers 

Example 3: Given that 𝑓(𝑟) = 𝑎𝑟 + 𝑏 and ∑ 𝑓(𝑟) = 3𝑛2 + 7𝑛𝑛
𝑟=1  , find the constants 𝑎 and 𝑏. 

Sums of Squares and Cubes 

Example 4: Find ∑ 𝑟22𝑛
𝑟=𝑛+1 . 

Write the expression as a 
subtraction involving two 
summations, both with a lower 
limit of 𝑟 = 1. 

∑ 𝑟2

2𝑛

𝑟=𝑛+1

= ∑ 𝑟2

2𝑛

𝑟=1

− ∑ 𝑟2

𝑛

𝑟=1

 

Rewrite the summations using 
the standard result for the sum 
of squares. 

∑ 𝑟2

2𝑛

𝑟=𝑛+1

=
1

6
(2𝑛)(2𝑛 + 1)(4𝑛 + 1) −

1

6
𝑛(𝑛 + 1)(2𝑛 + 1) 

Factorise and simplify the RHS. 
∑ 𝑟2

2𝑛

𝑟=𝑛+1

=
1

6
𝑛(2𝑛 + 1)[2(4𝑛 + 1) − (𝑛 + 1)] 

∑ 𝑟2

2𝑛

𝑟=𝑛+1

=
1

6
𝑛(2𝑛 + 1)[8𝑛 + 2 − 𝑛 − 1] 

∑ 𝑟2

2𝑛

𝑟=𝑛+1

=
1

6
𝑛(2𝑛 + 1)(7𝑛 + 1) 

 

Method of Differences 

Take a series of the general form ∑ 𝑓(𝑟 + 1) − 𝑓(𝑟)𝑛
𝑟=1 . Writing the summation term-by-term yields: 

(𝑓(2) − 𝑓(1)) + (𝑓(3) − 𝑓(2)) + ⋯ + (𝑓(𝑛) − 𝑓(𝑛 − 1)) + (𝑓(𝑛 + 1) − 𝑓(𝑛)). 

It quickly becomes apparent that most terms will cancel each other out, leaving  ∑ 𝑓(𝑟 + 1) − 𝑓(𝑟)𝑛
𝑟=1 =

𝑓(𝑛 + 1) − 𝑓(1). This is the basis behind the method of differences. 

Method of Differences for General Numeric and Algebraic Series 

Example 5: ∑ 2𝑟𝑛
𝑟=1 = ∑ [𝑟(𝑟 + 1) − (𝑟 − 1)𝑟]𝑛

𝑟=1 . Use this result and the method of differences to prove 

that ∑ 𝑟 =
1

2
𝑛(𝑛 + 1)𝑛

𝑟=1 . 

Method of Differences Involving Partial Fractions (A-Level Only) 

Example 6: a) Express 
2

𝑘(𝑘+2)
 in partial fractions. b) Hence find ∑

2

𝑘(𝑘+2)
∞
𝑘=1 . 

Define 𝑤 to be one of 
the roots of the original 
polynomial. The first 
root has been chosen 
here. 

Let 𝑤 = 2𝛼 + 1 

∴  α =
𝑤 − 1

2
 

 

These are given in the data booklet. 

a.) Split the fraction into partial fractions 
by the standard method. 

2

𝑘(𝑘 + 2)
≡

𝐴

𝑘
+

𝐵

𝑘 + 2
 

2 ≡ 𝐴(𝑘 + 2) + 𝐵(𝑘) 

Let 𝑘 = 0: 

2 = 2𝐴 ⇒ 𝐴 = 1 

Let 𝑘 = −2 

2 = −2𝐵 ⇒ 𝐵 = −1 
2

𝑘(𝑘 + 2)
≡

1

𝑘
−

1

𝑘 + 2
 

b.) Use the partial fractions to sum the 
series, not immediately simplifying the 

pairs of terms. Identify that the 
1

3
 terms 

cancel out from the first and third pairs of 
terms. This means the right term of a pair 
of terms will always cancel out with the 
left term of the pair of terms that 
appears two pairs of terms later. 

∑
2

𝑘(𝑘 + 2)

𝑛

𝑘=1

= ∑ [
1

𝑘
−

1

𝑘 + 2
]

𝑛

𝑘=1

 

Using the method of differences: 

= (
1

1
−

1

3
) + (

1

2
−

1

4
) + (

1

3
−

1

5
) + ⋯ 

+ (
1

𝑛 − 2
−

1

𝑛
) + (

1

𝑛 − 1
−

1

𝑛 + 1
) + (

1

𝑛
−

1

𝑛 + 2
) 

= 1 +
1

2
−

1

𝑛 + 1
−

1

𝑛 + 2
 

 

Note that as 𝑛 tends to infinity, 
1

𝑛+1
 and 

1

𝑛+2
 both become progressively smaller, 

tending to 0. Hence, only the constant 
term will remain. 
 
 

As 𝑛 → ∞, ∑
2

𝑘(𝑘+2)
𝑛
𝑘=1 → ∞.  

∴ ∑
2

𝑘(𝑘 + 2)

∞

𝑘=1

=
3

2
 

 

 

Substitute 𝑓(𝑟) = 𝑎𝑟 + 𝑏 into the summation. 
∑ 𝑎𝑟 + 𝑏

𝑛

𝑟=1

= 3𝑛2 + 7𝑛 

Apply the distributive properties that ∑(𝒖𝒓 +
𝒗𝒓) = ∑ 𝒖𝒓 + ∑ 𝒗𝒓 and ∑ 𝑐𝑢𝑟 = 𝑐∑𝑢𝑟  to the 
LHS. 

𝑎 ∑ 𝑟

𝑛

𝑟=1

+ 𝑏 ∑ 1

𝑛

𝑟=1

= 3𝑛2 + 7𝑛 

Rewrite the summations using the standard 
results for natural numbers. 

𝑎 [
1

2
𝑛(𝑛 + 1)] + 𝑏(𝑛) = 3𝑛2 + 7𝑛 

Expand and simplify the LHS. 𝑎

2
𝑛2 +

𝑎

2
𝑛 + 𝑏𝑛 = 3𝑛2 + 7𝑛 

 
Group the like terms and compare coefficients 
to identify 𝑎 and 𝑏. It can be useful to check 
answers using the sum function on a 
calculator. 
 

𝑎

2
𝑛2 + (

𝑎

2
+ 𝑏) 𝑛 = 3𝑛2 + 7𝑛 

Comparing coefficients: 
𝑎

2
= 3 ⇒ 𝑎 = 6 

𝑎

2
+ 𝑏 = 7 ⇒ 3 + 𝑏 = 7 ⇒ 𝑏 = 4 

 
 

 

Use the result given to derive an 
expression for ∑ 𝑟𝑛

𝑟=1  by dividing 
both sides by 2. 
 

∑ 2𝑟

𝑛

𝑟=1

= ∑[𝑟(𝑟 + 1) − (𝑟 − 1)𝑟]

𝑛

𝑟=1

 

⇒ ∑ 𝑟

𝑛

𝑟=1

=
1

2
∑[𝑟(𝑟 + 1) − (𝑟 − 1)𝑟]

𝑛

𝑟=1

 

Calculate the first few terms and 
the last few terms until a pattern 
is spotted. This is done by 
substituting 𝑟 = 1, 𝑟 = 2, and r=
𝑛 − 1, 𝑟 = 𝑛 − 1 separately. 
Avoid simplifying the pairs of 
terms to spot the pattern more 
easily. 

Using the method of differences: 

∑ 𝑟

𝑛

𝑟=1

=
1

2
[((1 × 2) − (0 × 1)) + ((2 × 3) − (1 × 2)) + ⋯ 

+((𝑛 − 1)𝑛 − (𝑛 − 2)(𝑛 − 1)) + (𝑛(𝑛 + 1) − (𝑛 − 1)𝑛) 

As the (1 × 2) terms cancel out 
from the first and second pairs of 
terms, it becomes clear that the 
left term of a pair of terms will 
cancel out with the right term of 
the next pair of terms. From this, 
it is possible to reduce the 
summation as shown. Physically 
crossing out terms will be useful. 

Using the method of differences: 

=
1

2
[((1 × 2) − (0 × 1)) + ((2 × 3) − (1 × 2)) + ⋯ 

+((𝑛 − 1)𝑛 − (𝑛 − 2)(𝑛 − 1)) + (𝑛(𝑛 + 1) − (𝑛 − 1)𝑛)] 

=
1

2
[0 + 𝑛(𝑛 + 1)] 

=
1

2
𝑛(𝑛 + 1) 

∴ ∑ 𝑟 =
1

2
𝑛(𝑛 + 1)𝑛

𝑟=1 , as required. 
 

 

 

𝑓(𝛼) = 0 by the factor 
theorem. Hence, 
substitute 𝛼 into the 
original polynomial to 
derive a new 
polynomial in terms of 
𝑤. 

 

3 (
𝑤 − 1

2
)

3

+ (
𝑤 − 1

2
)

2

− 4(
𝑤 − 1

2
) + 1 = 0 

 

Expand each bracket 
and leave the new 
polynomial in simplified 
form. 

3 (
𝑤3 − 3𝑤2 + 3𝑤 − 1

8
) + (

𝑤2 − 2𝑤 + 1

4
) − 4 (

𝑤 − 1

2
) + 1 = 0 

3(𝑤3 − 3𝑤2 + 3𝑤 − 1) + 2(𝑤2 − 2𝑤 + 1) − 16(𝑤 − 1) + 8 = 0 
3𝑤3 − 9𝑤2 + 9𝑤 − 3 + 2𝑤2 − 4𝑤 + 2 − 16𝑤 + 16 + 8 = 0 

3𝑤3 − 7𝑤2 − 11𝑤 + 23 = 0 

 

Rewrite 
1

α
+

1

𝛽
+

1

𝛾
+

1

𝛿
 using the expressions 

that relate the roots of the polynomial to its 
coefficients. 

1

α
+

1

𝛽
+

1

𝛾
+

1

𝛿
=

∑ 𝛼𝛽𝛾

∑ 𝛼𝛽𝛾𝛿
 

Calculate ∑ 𝛼𝛽𝛾 and ∑ 𝛼𝛽𝛾𝛿. Use the 
expression from the first line of working to 
find the required result. 
 

∑ 𝛼𝛽𝛾 = −
(−1)

4
=

1

4
 

∑ 𝛼𝛽𝛾𝛿 =
−12

4
= −3 

1

α
+

1

𝛽
+

1

𝛾
+

1

𝛿
=

1
4

−3
= −

1

12
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https://bit.ly/pmt-cc 
https://bit.ly/pmt-cc


