Further Algebra and Functions I Cheat Sheet

Relationship Between the Roots and Coefficients of a Polynomial

The roots of a polynomial are the points at which the curve crosses the x-axis. In the 15^{th} century, French mathematician Francois Viète discovered a connection between the sums and products of the roots of a polynomial and its coefficients.

Quadratic Equations

For a quadratic equation of the form $ax^2 + bx + c = 0$ with roots α , β , where $a \neq 0$:

- $\alpha + \beta = -\frac{b}{a}$
- $\alpha\beta = \frac{c}{c}$

Cubic Equations

For a cubic equation of the form $ax^3 + bx^2 + cx + d = 0$ with roots α , β , γ , where $a \neq 0$:

- $\alpha + \beta + \gamma = -\frac{b}{a}$
- $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$
- $\alpha\beta\gamma = -\frac{d}{2}$

Quartic Equations

For a quartic equation of the form $ax^4 + bx^3 + cx^2 + dx + e = 0$ with roots α , β , γ , δ , where $a \neq 0$:

- $\sum \alpha = \alpha + \beta + \gamma + \delta = -\frac{b}{\alpha}$
- $\sum \alpha \beta = \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \frac{c}{c}$
- $\sum \alpha \beta \gamma = \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = -\frac{d}{a}$
- $\sum \alpha \beta \gamma \delta = \alpha \beta \gamma \delta = \frac{e}{2}$

Example 1: α , β , γ and δ are the roots of the quartic equation $4x^4 + 7x^3 + 8x^2 - x - 12 = 0$. Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$.

Linear Transformation of the Roots of a Polynomial

It is possible to form a new polynomial equation whose roots are a linear transformation of a given polynomial equation.

There are two common methods to tackle these problems, but as the AQA A-Level Further Mathematics course just involves linear transformations of cubics and quartics, the substitution method is generally most suitable. This method is used in the example below.

Example 2: $3z^3 + z^2 - 4z + 1 = 0$ has roots α , β , and γ . Find a new polynomial with roots $2\alpha + 1$, $2\beta + 1$, $2\gamma + 1.$

Define <i>w</i> to be one of the roots of the original polynomial. The first root has been chosen here.	Let $w = 2\alpha + 1$	$\therefore \ \alpha = \frac{w-1}{2}$

$$f(\alpha) = 0 \text{ by the factor}$$
theorem. Hence,
substitute α into the
original polynomial to
derive a new
polynomial in terms of
w.
Expand each bracket
and leave the new
polynomial in simplified
form.

$$3\left(\frac{w-1}{2}\right)^3 + \left(\frac{w-1}{2}\right)^2 - 4\left(\frac{w-1}{2}\right) + 1 = 0$$

$$3\left(\frac{w^3 - 3w^2 + 3w - 1}{8}\right) + \left(\frac{w^2 - 2w + 1}{4}\right) - 4\left(\frac{w-1}{2}\right) + 1 = 0$$

$$3(w^3 - 3w^2 + 3w - 1) + 2(w^2 - 2w + 1) - 16(w-1) + 8 = 0$$

$$3w^3 - 9w^2 + 9w - 3 + 2w^2 - 4w + 2 - 16w + 16 + 8 = 0$$

$$3w^3 - 7w^2 - 11w + 23 = 0$$

Series as a Summation

derive a

and leave

form.

w.

A series is the sum of the terms in a given sequence. In general, $S_n = u_1 + u_2 + u_3 + \dots + u_n$, where S_n denotes the sum of the first n terms of the sequence, and u_n denotes the n^{th} term of the sequence. Using sigma notation, S_n can be more efficiently written as: $\sum_{r=1}^n u_r$. In words, this means to sum u_r from 1 to n.

This section will look at problems involving summing series from the following standard results:

Example 3: Given that f(r) = ar + b and $\sum_{r=1}^{n} f(r) = 3n^2 + 7n$, find the constants a and b.

• $\sum_{r=1}^{n} 1 = n$ • $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$ • $\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$ • $\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$

Sums of Integers

Substitute f(r) = ar + b into the summation. $\sum^{n} ar + b = 3n^2 + 7n$ Apply the distributive properties that $\sum (u_r +$ $a\sum^{n}r+b\sum^{n}1=3n^{2}+7n$ $\boldsymbol{v}_r) = \sum \boldsymbol{u}_r + \sum \boldsymbol{v}_r$ and $\sum c \boldsymbol{u}_r = c \sum \boldsymbol{u}_r$ to the LHS. Rewrite the summations using the standard $a\left[\frac{1}{2}n(n+1)\right] + b(n) = 3n^2 + 7n$ results for natural numbers. $\frac{a}{2}n^2 + \frac{a}{2}n + bn = 3n^2 + 7n$ Expand and simplify the LHS. Group the like terms and compare coefficients $\frac{a}{2}n^2 + \left(\frac{a}{2} + b\right)n = 3n^2 + 7n$ Comparing coefficients: to identify *a* and *b*. It can be useful to check answers using the sum function on a $\frac{a}{2} = 3 \Rightarrow a = 6$ calculator. $\frac{a}{a} + b = 7 \Rightarrow 3 + b = 7 \Rightarrow b = 4$

Sums of Squares and Cubes

Example 4: Find $\sum_{r=n+1}^{2n} r^2$.

◙∧⊚

Method of Differences

(f(2) - f(1))

Method of Differences for General Numeric and Algebraic Series

that $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$.

Use the result given to d expression for $\sum_{r=1}^{n} r$ by both sides by 2.

Calculate the first few te the last few terms until is spotted. This is done b substituting r = 1, r =n-1, r=n-1 separa Avoid simplifying the pai terms to spot the patter easily.

As the (1×2) terms car from the first and secon terms, it becomes clear left term of a pair of ter cancel out with the righ the next pair of terms. F it is possible to reduce the summation as shown. Pl crossing out terms will be

Method of Differences Involving Partial Fractions (A-Level Only)

```
a.) Split the fraction int
by the standard meth
```

```
b.) Use the partial frac
series, not immediate
pairs of terms. Identify
cancel out from the first
terms. This means the
of terms will always car
left term of the pair of
appears two pairs of t
```

Note that as *n* tends to $\frac{1}{n+2}$ both become prog tending to 0. Hence, or term will remain.

AQA A Level Further Maths: Core

Take a series of the general form $\sum_{r=1}^{n} f(r+1) - f(r)$. Writing the summation term-by-term yields:

+
$$(f(3) - f(2))$$
 + ... + $(f(n) - f(n-1))$ + $(f(n+1) - f(n))$.

It quickly becomes apparent that most terms will cancel each other out, leaving $\sum_{r=1}^{n} f(r+1) - f(r) =$ f(n + 1) - f(1). This is the basis behind the *method of differences*.

Example 5: $\sum_{r=1}^{n} 2r = \sum_{r=1}^{n} [r(r+1) - (r-1)r]$. Use this result and the method of differences to prove

lerive an dividing	$\sum_{r=1}^{n} 2r = \sum_{r=1}^{n} [r(r+1) - (r-1)r]$ $\Rightarrow \sum_{r=1}^{n} r = \frac{1}{2} \sum_{r=1}^{n} [r(r+1) - (r-1)r]$
erms and	Using the method of differences: $\frac{n}{2}$
by	$\sum r = \frac{1}{2} [((1 \times 2) - (0 \times 1)) + ((2 \times 3) - (1 \times 2)) + \cdots$
2, and r= itely. irs of	+((n-1)n - (n-2)(n-1)) + (n(n+1) - (n-1)n)
n more	
ncel out	Using the method of differences:
d pairs of that the	$= \frac{1}{2}[((1 \times 2) - (0 \times 1)) + ((2 \times 3) - (1 \times 2)) + \cdots$
ms will	+((n-1)n - (n-2)(n-1)) + (n(n+1) - (n-1)n)]
t term of rom this,	$=\frac{1}{2}[0+n(n+1)]$
he hysically	$=\frac{1}{2}n(n+1)$
e useful.	$\therefore \sum_{r=1}^{n} r = \frac{1}{2}n(n+1), \text{ as required.}$

Example 6: a) Express $\frac{2}{k(k+2)}$ in partial fractions. b) Hence find $\sum_{k=1}^{\infty} \frac{2}{k(k+2)}$

to partial fractions od.	$\frac{2}{k(k+2)} \equiv \frac{A}{k} + \frac{B}{k+2}$ $2 \equiv A(k+2) + B(k)$ Let $k = 0$: $2 = 2A \Rightarrow A = 1$ Let $k = -2$ $2 = -2B \Rightarrow B = -1$ $\frac{2}{k(k+2)} \equiv \frac{1}{k} - \frac{1}{k+2}$
tions to sum the y simplifying the y that the $\frac{1}{3}$ terms st and third pairs of right term of a pair incel out with the terms that erms later.	$\sum_{k=1}^{n} \frac{2}{k(k+2)} = \sum_{k=1}^{n} \left[\frac{1}{k} - \frac{1}{k+2}\right]$ Using the method of differences: $= \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \cdots + \left(\frac{1}{n-2} - \frac{1}{n}\right) + \left(\frac{1}{n-1} - \frac{1}{n+1}\right) + \left(\frac{1}{n} - \frac{1}{n+2}\right) = 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}$
to infinity, $\frac{1}{n+1}$ and pressively smaller, nly the constant	As $n \to \infty$, $\sum_{k=1}^{n} \frac{2}{k(k+2)} \to \infty$. $\therefore \sum_{k=1}^{\infty} \frac{2}{k(k+2)} = \frac{3}{2}$

